
Extreme Heat Assessment 2020–2024
Thermal and Ecological Spatiotemporal Trends to Assess Extreme Heat

Hazard in Euskadi

Land surface temperature (LST) is obtained from Landsat images using the widely used

radiative transfer equation. The thermal and ecological conditions are evaluated by com-

puting urban heat island (UHI) and urban thermal field variance index (UTFVI) from LST

data. The influence of vegetation, built area, presence of waterbody, and bare soil on LST is

examined using land cover indices through pixel-level multivariate linear regression analysis

(Abir et al., 2021). Land surface temperature (LST) is frequently used as an indicator for

UHI and shows a positive correlation with the density of sealed surfaces while displaying a

negative association with UGS (Aznarez et al., 2024; Rodŕıguez-Gómez et al., 2022). LST is

used to quantify the extent and size of surface heat. LST is an integral variable in quantify-

ing thermal hazard levels across cityscapes. Local topography, human activity, and specific

urban heat island effects influence cities’ dynamics and green spaces.

Datasets generated for Euskadi

Mean Land Surface Temperature and Normalized Difference Veg-

etation Index

The LST data generation process was commenced by adapting a NASA ARSET (2022)

open-source code in Google Earth Engine (GEE). The initial script provided a foundational

approach to retrieving daytime LST spatial data at 30 m pixels for the entire Euskadi region.

Building upon this, the methodology was refined, incorporating robust techniques and addi-

tional parameters based on Kafy et al. (2021), enhancing the accuracy and applicability of

the analysis to the Euskadi region. The LST data were obtained from Landsat 8 level 2 Sur-

face Reflectance (SR) and Surface Temperature (ST) imagery (Collection 2 Tier 1), covering

the hottest months (June, July, August, September) (Aznarez et al., 2024; Marquez-Torres

et al., 2025) from 2020–2024. To ensure reliability, images considering minimal cloud cover

(< 10%) were selected Abir et al. (2021), and cloud/shadow pixels were masked using the
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QA PIXEL band Abir et al., 2021; NASA ARSET, 2022. The spatial context was defined

using OpenStreetMap (OSM) within the administrative boundary of Euskadi.

Vegetation-based emissivity correction was applied to improve LST estimation, follow-

ing methods adapted from Sobrino et al. (2004) and Kafy et al. (2021). The Normalized

Difference Vegetation Index (NDVI) was first calculated using the red (SR B4) and near-

infrared (SR B5) bands from Landsat for the summer period (June 1st–September 30th) of

2020–2024 at 30 m of spatial resolution.

NDVI is calculated using Equation (1):

NDVI =
NIR− RED

NIR + RED
(1)

where: NIR (Near-Infrared, band SR B5) implies high reflectance in healthy vegetation,

and band RED (Red, SR B4) implies High absorption in healthy vegetation.

With NDVI mapping, we can identify and prioritize vegetation-poor, heat-exposed areas

for greening interventions.

LST is derived from the thermal band (ST B10) using Equation (2), which is derived

from Equation (3):

LST =
TB

1 +
(

λ·TB

ρ

)
ln ε

(2)

where:

• λ = 11.5 µm: central wavelength of Landsat TIR band

• ρ = 1.438× 104 µm·K: Planck’s radiation constant

• TB: brightness temperature from band ST B10

• ε: surface emissivity estimated from NDVI

TB (Brightness Temperature) implies raw thermal readings from Landsat.

ε (Emissivity) implies estimation based on NDVI, indicating surface heat retention.

Vegetation proportion (Pv) was derived using min-max normalization of NDVI values

across the study area. Where, Pv = proportion of vegetation is calculated using Equation (3).

Surface emissivity (ε) is computed as a linear function of Pv:

ε = 0.004 · Pv + 0.986 (3)

Simultaneously, NDVI was also evaluated independently to assess vegetation distribution

and its relation to urban temperature patterns across the Euskadi region. NDVI is crucial
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in estimating urban heat exposure because areas with higher vegetation cover tend to have

lower surface temperatures due to evapotranspiration and shading effects.

Urban Thermal Field Variance Index (UTFVI)

The urban thermal field variance index (UTFVI), derived from Land Surface Temperature

(LST), is a suitable indicator for assessing urban heat stress and eco-environmental condi-

tions. It is another widely used indicator derived from LST to evaluate the urban environ-

ment’s eco-environmental quality or thermal well-being. The urban thermal field variance

index (UTFVI) is widely used to describe the UHI effect (Tomlinson et al., 2011). It can be

quantified using Equation (4), calculated using Zhang’s equation (Zhang, 2006).

UTFVI =
Ts − Tm

Ts

(4)

Ts = LST value of pixels and Tm = the Mean LST of the area.

Threshold UTFVI value for ecological evaluation and thermal com-

fort

UTFVI range UHI presence Ecological evaluation index

< 0 None Excellent
0− 0.005 Weak Good
0.005− 0.010 Middle Normal
0.010− 0.015 Strong Bad
0.015− 0.020 Stronger Worse
> 0.020 Strongest Worst

Table 1: UTFVI classification thresholds

These hotspots have altered microclimates, including stagnant air flow, high humidity, and

increased pollution (Ge et al., 2010; Sejati et al., 2019). UTFVI also increases convection,

which leads to increased thunderstorms (Singh et al., 2017).

Application

Urban designers and planners can use UTFVI to identify thermally sensitive zones, which

opens the door to green infrastructure, shaded pedestrian paths, and cooling centers. Also,

forecasting UTFVI patterns in the future can aid cities to devise climate-adaptation policy
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and reduce heat-related health hazards (Wang et al., 2017). Therefore, UTFVI is an effective

tool in planning heat-resilient as well as human-sensitive urban composition.
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